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Molecular separations - a major energy consumer
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Organic Solvent Nanofiltration (OSN) - the future for molecular separations in organic

systems?

e Water processing - Desalination - Reverse Osmosis (RO) dominates the market over multiple effect evaporation (high energy).

e Can membranes produce the same paradigm change for organic liquids processing?

World Scale RO Plants World Scale Oil Refineries
100,000 - 300,000 m3 d-1 50,000 - 100,000 m3 d-1 :



Organic Solvent Nanofiltration (OSN) - the future for molecular separations in organic

systems?

Emerging membrane technology for separation and
purification processes involving organic solvents.
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OSN membranes must preserve their separation characteristics
in contact with organic solvents.



Fabricating molecular separation membranes - phase inversion





OSN membrane fabrication: solvent stability
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OSN for purification

(c) Purification Defining feature: at least two solutes and one solvent
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P. Marchetti et al., Chem. Rev. 114 (2014), 10735-10806



OSN for purification

Constant Volume Diafiltration [] separate model API (yellow dye, MW=274) from model large Impurity (blue dye,
MW=826) in methanol.
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OSN for purification

B Separation of coloured impurity from API at Astra Zeneca by OSN *

(3a)  Starting material containing high MW (3a)

coloured compound

(3b)  Coloured impurity difficult to remove via

extraction

(3c)  Product after OSN purification.

Nice white powder!

Nanofilter solution so that API passes through

membrane with solvent and impurity is retained

august 2006 tce 31

*The Chemical Engineer, August 2006



DuraMemTM FABRICATION PROCESS

Founded Membrane Extraction Technology (MET) licensed OSN technology from Imperial College and developed the

DuraMemTM range

STEP 1: STEP 2: STEP 3:

Dope Solution _ Membrane - Chemical Crosslinking
Preparation Casting

STEP 6: STEP 5: STEP 4:

Quality Control - Membrane - Membrane
Element Drying
Fabrication

®  DuraMemTM membrane cartridge
B ALL components are solvent stable
m  Cartridges are leak free

®  RSF - Regulatory Support File
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Commercialisation of crosslinked Pl OSN membranes

DuraMem™ range
STEP 1: STEE2:

Dope Solution ‘ Membrane
Preparation Casting
STEPRG: STEP 5:
Quality Control — Membrane
1 Element
Fabrication

2006-2007
Invention of
Crosslinked
Polyimide
Membranes
US Patent
8,894,859

2007-2008 MET Ltd

Membrane Extraction Technology (MET), Imperial Spin-out company,
licensed OSN technology from Imperial College and developed the

= DuraMem™ membrane cartridge
{ ] = ALL components are solvent stable
. = (Cartridges are leak free
RSF — Regulatory Support File

-

Scale-up Cross-linked PI DuramemTM

STEP 3:

‘ Chemical Crosslinking

STEP 4:

— Membrane

Drying

AFTER IMMERSION IN DMF

Evonik MET Ltd

= MET acquired by Evonik AG
1 March 2010

= Evonik have invested in new
facilities and space for
production of membranes
and membrane modules

= Operational since June 2012

= Fabrication of a range of
membranes and modules up
to 8" x 40" spiral modules

I 2010 Evonik Acquisition of MET Ltd

2008 onwards

DuramemTM
Commercial
Installations




Membranes for Molecular Separation

Adventures in Nanoland



Organic Solvent Nanofiltration (OSN)

Integrally skinned asymmetric (I1SA) Thin Film composite (TFC)

membrane membrane

ONE step process MULTIPLE step process

same material

different material
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Membrane Fabrication - the search for permeance

Thin Film Composites By Interfacial Polymerisation

aqueous amine solution e m - phenylenediamine (MPD)

. e trimesoyl chloride (TMC) in hexane
organic acid chloride solution
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Nanoland - sub 10nm polyamide films

v’ Fabrication of highly cross-linked ultrathin nanofilms

Trimesoyl chloride Hexane phase

Polymerized
nanofilm at the interface

Nanostrand layer

Ultrafiltration support

Aqueous phase

MPD: m-Phenylenediamine; PIP: Piperazine; AMP: 4-(Aminomethyl)piperidine
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Nanoland - Sub 10nm polyamide films

v Properties of highly cross-linked ultrathin nanofilms
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Nanoland - Sub 10nm polyamide films

v Properties of highly cross-linked ultrathin nanofilms

8 nm thick nanofilm

--
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Nanoland- Sub 10nm polyamide films

v’ Performance of highly cross-linked ultrathin nanofilms
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S. Karan, Z. Jiang, A. Livingston Science 348 (2015), 1347




Membranes for Molecular Separations

Refining

Separation of complex mixtures



Separation of complex organic mixtures

v’ Crude Oil Refining

S v’ Conventional crude refining separates molecules based on boiling

points through repeated evaporation and condensation cycles
LIGHTWEIGHT GASES

RISE THROUGH
THE TRAYS

(phase change)

—0 e NAPHTHAS
GASOLINE

—0 e KEROSENES
KEROSENE

CRUDE OIL IS
HEATED TO
750°F

FOR HOME
HEATERS,
JET FUEL
v’ It results in significant energy consumption, and carbon area
—#= GAS OILS i
DIESEL FUEL foot-print
CRUDE OIL IS il T
Fﬁi‘;@i“;‘;’éo DOWNCOMERS<= L MOTOR OIL
i 910°F . .
SR = —> FUELOIL_ v’ It would be advantageous to fractionate whole crude andjor its
HEAVY, UNREFINED f SHIPS, . . . Lo . .
powrars I CANDLES various components into conventional distillate fractions without
the requirement for a thermal phase change (boiling)
GASES ~— ASPHALT
BOTTLED AND NATURAL GAS ROAD TAR
* Geordia -1 Imperial College
WQf Queen Mary Torhi  ExonMobil |15 .
University of London o onaon



Separation of complex organic mixtures

v’ Crude Oil Refining

——* Naphtha

AP = 35 bar
2 T=25C
MWCO < 200 Da
lep» KerosenelJet Fuel
Desalted

Crude Oil AP = 40 bar
1 T=100°C
_’O_' MWCO = 300-400 Da

— Atmospheric Gas Qil

AP = 40 bar )
. 3 T=100°C Vacuum Gas Oil
MWCO ~1.4kDa -
AP =70 bar
B T=150"C
MWCO ~ 8 kDa

e—

Residual Fuel Oil

Ref. B. McCool et al. US patent, US20190367820A1,

v Using different membranes at each stage, the crude can be

fractionated based on size and class without boiling (phase

change)

v’ The key is to develop rigid membranes which are available to

separate light hydrocarbon stream without swelling

21




Separation of complex organic mixtures

PIM-1
v’ Crude Oil Refining

PIM-1
Introducing rigid moieties makes rigid structure

M2 Me . ,
r I o and microporosity
e o ['"*’“Jﬁji SBAD =
>0
Mg Me CM

V Spiro-Bifluorene Aryl Daimine

Non-accessible pore

(rigidity)
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Me

e I LAEa5 oy
MO

J(H Q.O ome one

SBAD-3
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Separation of complex organic mixtures

v’ Crude Oil Refining

v SBAD dissolved in chloroform and cast onto crosslinked polyetherimide support membranes

v Film thickness a few hundred nm

v’ Membrane modules were fabricated to demonstrate scale-up potential

23



Separation of complex organic mixtures

v’ Crude Oil Refining

D O g e E - Retentate

Response ) [ .W._w

factor |

Aromatics

v’ The actual crude oil can be separated using SBAD-1 and analysed with GCxGC-FID (Exxon)

K.A. Thompson and R. Mathias, A.G. Livingston et al., Science 369 (2020), 369



Membranes for Molecular Separations

Polymers and Exactymers

25



Exact Polymer Synthesi‘ Defined Monomer Sequences

Oligos Proteins Mabs Genes

Molecular Small Peptides

Biopolymers

Precision Molecules

Synthetic Polymers

100 1,000 10,000 100,000

26
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Iterative Synthesis Using Nanostar Sieving

Cleave polymers from Hub and Remove

Hub to leave chains

Solvent

4

Hub molecule

acts as a synthesis support @

Building blocks extend the polymer

with each chain extension cycle

Applications

Monodisperse homopolymers
Defined monomer sequence polymers
Oligonucleotides

Peptides

27




PEGabet synthesis concept

EXACTYMER
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Oligonucleotide Therapeutics

0
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Oligonucleotide Therapeutics

a Fomivirsen

090000@@030@00@00@@
1 k {

b Mipomersen

d Eteplirsen

RNE T € € A A G A F _ C A A G G _ A A G A T G, G _ €

1 10 20

e Golodirsen

(N) DNA
@ rna
== rvo
o 2"-0-methoxyethyl
@ 2-0-methyl
@ 2"-Fluoro
¥ 5-Methyl pyrimidine
=== Phosphorothioate

m Phosphodiester

NG, T, 7 6, €, €6, F, €., 6,6, 7, F ¢ _ T, 6,A A G G, 7,6 5 5 _CFK

1 10 20

f Nusinersen

Guide strand

Passenger strand

10
Guide strand

Nat Rev Drug Discovery (2020) 19 pp 673-694

3" —GalNAc

Use of modified nucleic acid fragments, typically 15-25 bases long, to

modulate gene expression

Potential modes of action

v' 1. Interfere with protein
expression

v 2. Immune system

° Thﬂﬁt@déﬁma@i@qﬂroved oligonucleotide therapies has grown
from 6 at the end of 2017 to 10 at the close of 2020.

e Itis estimated that the market for oligonucleotide synthesis will
reach €2Bn in 2020, and is growing at 10% CAGR

e More than 150 oligo drugs currently in trials

Exact monomer sequence is critical!



Nanostar-1 Synthesiser (10-20 g 20mer ASO)
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completion by

UPLC-MS deprotected
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—— Washing line

J Oligo concentration
gradient
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l's

‘ S = Dry solvent reservoir

chain-extended oligos

F = Feed tank
P2 P = Permeate tank
H =HPLC pump

Chain extension

Dry solvent IN

IF = Inline filter

C = Circulation pump
SP = Sampling port
IP = Injection port

W = Washing outlet
V = Ball valve

PRV = Pressure relief valve
Pl = Pressure indicator

Diafiltration
n-n+l1

Permeate OUT

e Reaction debris

Reactants HeOCels & e Excess amidites
e Amidites MeOCgH. O
i v O
e Activator Dmtr HO
e S/O-transfer o0 R B"
e Quench NC\/\O—F( - . ©
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Cne s star X. 0 R
,’ 4 NI
III " AR
Loaded Hub — e . CneO ?
(n=1) s ~a Analysis of purification performance by UPLC-MS

Nanostar-1 Synthesiser

B = ABz, GiBu, CAc, U

R =OMe, F
X=0,S5
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Purity of cleaved and deprotected crude product

Run 1: Mip PG Run 2: Dmtr PG Run 3: Dmtr PG
DMF-MeCN Sulfolane-MeCN Sulfolane-MeCN
ETT, XH DCI, PADS DCI, PADS / Purity

85% ﬂ 87% 90.7%

-———) 13-mer

n- n-\ n—4
B N ) R

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 10 15 20 25 30 35  TasgetRurity=>=95%, ng fugkher purificatign negdeds 20 25 30 35

68% FLP 83% FLP 90% FLP
HPLC-UV 260 nm,
20-mer /FLP
i C18 hexylamine
full length
ion-pair gradient
product (FLP) n-1 n-1 impuri
\ X
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Inclisiran

A Chemical Configuration

Backbone medifications 2-Ribose modifications
Q Base 0, Base ;
0 1.-O |

\_/ p— Nt

3-Passenger-strand bioconjugate Y Q.. 1 s
Triantennary GalNAc Phosphorothio: 2'-Fluoro |
== e g _ e =
' Gu de Strand 2 \

]T".I"I"'"l. .I.]“I"I'T .'"I"" TTT3 U) NOVARTIS Our Company v Our Focus v Our Impact v
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Passenger Strand

- Novartis new analysis further
- shows durable and potent LDL-C
- reduction with inclisiran, an

1

ORION-10: Efficacy e
Durable and potent with consistent effect over 18 months

investigational first-in-class
siRNA cholesterol-lowering

Percent change in LDL-C over time — observed values in ITT patients

i i i i

£ 0 D U S ——— — treatment
S b Time-averaged A 56% A 58%
3
E;\_' - ‘_‘\—_ .\ _‘
0 3 6 9 12 15 18

Months from start of treatment
P-value for placebo — indlisiran comparison at each time point <0.00001

1. All 95% confidence intervals are less than =+2% and therefore are not visible outside data points



Inclisiran and InNovAZ

Up until now, all licensed oligo drugs are for rare diseases, small patient population, and need only a

few 10’s to 100’s kg drug substance/year

Inclisiran (Novartis) - RNAIi drug; outstanding results for reduction of LDL cholesterol implicated in

cardiovascular disease. Requires two injections per year versus current multiple pills daily (statins).

!/ NOVARTIS

Inclisiran - potential for a large patient population....but how to manufacture at this scale?

December 2020 - Exactmer enters development programme with Novartis, AstraZeneca and CPI to

develop nanostar sieving for multi-ton production under GMP by 2023 AStrazeneca
https://www.uk-cpi.com/news/uk-collaboration-leads-the-way-on-revolutionising-oligonucleotide-medici
nes-manufacturing
=) -
S



https://www.uk-cpi.com/news/uk-collaboration-leads-the-way-on-revolutionising-oligonucleotide-medicines-manufacturing
https://www.uk-cpi.com/news/uk-collaboration-leads-the-way-on-revolutionising-oligonucleotide-medicines-manufacturing

A Viable Route to Multi-Ton Oligo Manufacturing

B Scale-up Strategy

Nanostar-10 Nanostar-100 Larger Plants

B Lab scale B Pilot scale

®  10-20 g batches B 100 g batches
B Flat-sheet B Membrane

membrane cells modules

Larger plants based on standard chemical

reactors combined with skid mounted

€)!(PCJ|'MER

membrane units



Membranes for Molecular Separations

Thank you for listening and thanks to....

Imperial College Georgia
London Tech|)
XACTMER
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